Your shopping cart is empty
Arduino MKR Vidor 4000








Description
The Arduino MKR Vidor 4000 brings Arduino's ease of use to the work with the most powerful reprogrammable chips that exist: FPGAs. With Vidor you can create a board where all pins are PWM signals controlling the speed of motors. You can capture sound in real time and make a sound effect pedal for your guitar. It is possible to create a real-time computer reading sensor information and sending it to a state-of-the-art monitor or capture video and overlay sensor information on the image that will then later be sent over to a screen. You can connect to the Arduino IoT Cloud and control a complex laboratory machine running a large amount of motors. You could even prototype your own processors inside the FPGA and have it to work in parallel to the other microcontroller on the board. Vidor is a device that invites for experimentation, precision, and high speed computation.
The main chip on the board is the Intel® Cyclone® 10CL016; it contains 16K logic elements, 504 KB of embedded RAM, and 56 18x18 bit HW multipliers for high-speed DSP operations. Each pin can toggle at over 150 MHz and can be configured for functions such as UARTs, (Q)SPI, high resolution/high frequency PWM, quadrature encoder, I2C, I2S, Sigma Delta DAC, etc.
The board comes with 8 MB of SRAM to support the FPGA operations on video and audio. The FPGA code is stored in a 2 MB QSPI Flash chip, of which 1 MB is allocated for user applications. It is possible to perform high-speed DSP operations for audio and video processing. Therefore, the Vidor includes a Micro HDMI connector for audio and video output, and a MIPI camera connector for video input. All of the board's pins are driven both by SAMD21 and FPGA, while respecting the MKR family format. Finally, there is a Mini PCI Express connector with up to 25 user programmable pins, that can be used for connecting your FPGA as a peripheral to a computer or to creat your own PCI interfaces.
The board's microcontroller is a low power Arm® Cortex®-M0 32-bit SAMD21, like in the other boards within the Arduino MKR family. The WiFi and Bluetooth® connectivity is performed with a module from u-blox, the NINA-W10, a low power chipset operating in the 2.4GHz range. On top of those, secure communication is ensured through the Microchip® ECC508 crypto chip. Besides that, you can find a battery charger, and a directionable RGB LED on-board.
The Power of the FPGA
If you are not familiar with the term, an FPGA is a Field Programmable Gate Array, a chip where the logic commanding its operations is not written at the time of manufacturing. It is possible to write your own CPU, a series of dedicated high frequency PWM outputs, a digital sound mixer, video overlay machine, or anything you can imagine. The main limitation is the amount of logical gates needed to design any of those applications.
As a way to exemplify how such a powerful processor can be integrated in your typical Arduino workflow, we have created a series of libraries that can perform some simple tasks incorporaring the microcontroller and the specialized FPGA code
Bluetooth® and Bluetooth® Low Energy
The communications chipset on the MKR Vidor 4000 can be both a Bluetooth® Low Energy and Bluetooth® client and host device. Something pretty unique in the world of microcontroller platforms.
Battery Power
Its USB port can be used to supply power (5V) to the board. It has a Li-Po charging circuit that allows the Arduino MKR Vidor 4000 to run on battery power or an external 5 volt source, charging the Li-Po battery while running on external power. Switching from one source to the other is done automatically.
Additional I2C Port
The MKR Vidor 4000 has an additional connector meant as an extension of the I2C bus. It's a small form factor 5-pin connector with 1.0 mm pitch.The I2C port, also referred to as the Eslov self-identification port within Arduino, comes with: SDA, SCL, GND, +5V, and an extra digital pin meant to send an alarm to the otherwise plain I2C devices connected to it.
Specifications
Microcontroller | SAMD21 Cortex®-M0+ 32bit low power ARM MCU |
Radio module | u-blox NINA-W102 |
Board Power Supply (USB/VIN) | 5V |
Secure Element | ATECC508 |
Supported Battery | Li-Po Single Cell, 3.7V, 1024mAh Minimum |
Circuit Operating Voltage | 3.3V |
Digital I/O Pins | 8 |
PWM Pins | 13 (0 .. 8, 10, 12, 18 / A3, 19 / A4) |
UART | 1 |
SPI | 1 |
I2C | 1 |
Analog Input Pins | 7 (ADC 8/10/12 bit) |
Analog Output Pins | 1 (DAC 10 bit) |
External Interrupts | 10 (0, 1, 4, 5, 6, 7, 8, 9, 16 / A1, 17 / A2) |
DC Current per I/O Pin | 7 mA |
CPU Flash Memory | 256 KB (internal) |
SRAM | 32 KB |
EEPROM | no |
Clock Speed | 32.768 kHz (RTC), 48 MHz |
LED_BUILTIN | 6 |
USB | Full-Speed USB Device and embedded Host |
LED_BUILTIN | 6 |
Video Output | Micro HD |
Camera Connector | MIPI camera connector |
PCI | Mini PCI Express port with programmable pins |
FPGA | Intel® Cyclone® 10CL016 |
Reviews
- Shipping from € 21.00 to United States
- 30 days money back guarantee
- Fast shipping from The Netherlands
Software
Download the latest Arduino IDE
The open-source Arduino Software (IDE) makes it easy to write code and upload it to the board. This software can be used with any Arduino board.